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Abstract: It has long been appreciated that analyses of genomic data (e.g., whole genome sequencing
or sequence capture) have the potential to reveal the tree of life, but it remains challenging to move
from sequence data to a clear understanding of evolutionary history, in part due to the computational
challenges of phylogenetic estimation using genome-scale data. Supertree methods solve that
challenge because they facilitate a divide-and-conquer approach for large-scale phylogeny inference
by integrating smaller subtrees in a computationally efficient manner. Here, we combined information
from sequence capture and whole-genome phylogenies using supertree methods. However, the
available phylogenomic trees had limited overlap so we used taxon-rich (but not phylogenomic)
megaphylogenies to weave them together. This allowed us to construct a phylogenomic supertree, with
support values, that included 707 bird species (~7% of avian species diversity). We estimated branch
lengths using mitochondrial sequence data and we used these branch lengths to estimate divergence
times. Our time-calibrated supertree supports radiation of all three major avian clades (Palaeognathae,
Galloanseres, and Neoaves) near the Cretaceous-Paleogene (K-Pg) boundary. The approach we used
will permit the continued addition of taxa to this supertree as new phylogenomic data are published,
and it could be applied to other taxa as well.
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1. Introduction

Next generation sequencing (NGS) technologies have revolutionized systematics by permitting the
collection of genome-scale datasets that can be used for phylogenetic analyses [1]. The availability of
large-scale data has led to the genesis of a novel field of study within evolutionary biology that combines
high-throughput data collection with evolutionary analysis: phylogenomics [2,3]. While the earliest
phylogenomic studies focused on the use of comparative data to infer gene function [4,5], the focus
shifted to efforts that used data from traditional Sanger sequencing combined with high-throughput
workflows to understand evolutionary history [6–8]. Even more recently, the definition of the term has
undergone another change; “phylogenomics” is now most often used to refer to studies that leverage
NGS technologies to collect large amounts of data to inform phylogenetic reconstruction. NGS is
often used for whole-genome sequencing (WGS) [9–11], but factors such as the cost of data collection
and the computational burden associated with genome assembly have catalyzed the development of
reduced-representation sequencing methods. Those methods economize data collection by reducing
the amount of DNA targeted for sequencing to a subsample of the genome enriched for specific loci
of interest.

Three reduced-representation sequencing methods have been used extensively in evolutionary
biology: (1) transcriptome sequencing; (2) RADseq; and (3) sequence capture. All three methods have
benefits and drawbacks in the context of specific studies [12]. Transcriptome sequencing has been
used for phylogenetics [13,14] but it requires tissues that have been collected and preserved in an
appropriate manner [15]. RADseq, which targets sequences located near specific restriction enzyme cut
sites [16], is most useful for examining shallow divergences [17] (but see [18]) and requires relatively
high molecular weight DNA samples for restriction enzymes to work efficiently [19]. In contrast to
these two methods, sequence capture approaches [20] have unique advantages that make them ideal for
projects that need to leverage the many tissue types available in natural history collections. For example,
sequence capture techniques can be used with older museum specimens that may only yield small
amounts of degraded DNA [21–23]. Additionally, sequence capture can target many different regions of
interest, including loci originally identified in transcriptome sequencing [24] or RADseq [25,26] studies.
Overall, sequence capture methods are potentially the best approach for leveraging natural history
collections and achieving the dream of constructing a (nearly) complete tree of life with resources
already available [27].

Birds are a group for which NGS approaches have been used with great success: to sequence
genomes [28], to study adaptation [29], to understand gene function [30], and to clarify phylogenetic
relationships (Table 1). As with many other groups, the evolutionary history of birds includes many
rapid radiations that occurred at varying times during their evolution, making the avian tree difficult to
resolve with small numbers of loci. Of particular importance is the rapid radiation early in the history
of Neoaves (the clade comprising 95% of extant avian species) that has made it difficult to generate a
well-supported hypothesis of relationships among extant avian orders (reviewed by [31]). A number
of other rapid radiations within avian orders have also proven difficult to resolve using data generated
by traditional Sanger sequencing [32–35]. The much larger datasets that NGS can produce [36–38] have
provided the first evidence for several superordinal avian clades [39]. Similar progress has been made
for difficult nodes within orders: in these cases, sequence capture studies targeting ultraconserved
element (UCE) loci have provided most of the data [40–42]. The successful use of UCE data in many
studies (Table 1) suggests they could be the key to building a well-resolved avian phylogeny that
includes all extant bird species.

In parallel with ongoing efforts to collect phylogenomic data from birds, there are efforts to build
“megaphylogenies” that include most or all extant avian species [43,44]. Most of those efforts are
meta-analyses that build taxon-rich trees by synthesizing information generated in previous studies.
These studies use two basic methodologies. Supermatrix methods compile as much raw character
evidence (typically sequence data) as possible, generate a large data matrix, and use that matrix for
large-scale phylogenetic analyses [45–47]. Supertree methods combine trees that were estimated in
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previous studies to yield a larger, more inclusive tree [48–51]. Unlike supermatrix methods, supertrees
can include taxonomic information along with other source trees, making it possible to generate
supertrees that include all named taxa in major clades [44,49]. Supermatrix and supertree approaches
represent different ways to generate large, synthetic trees, and aspects of both can be combined [52,53].
In fact, the most extensively used avian megaphylogeny [54] was constructed by constraining a
supermatrix analysis and then incorporating data-deficient taxa using simulations and taxonomic
information. Thus far, limited amounts of phylogenomic data have been used in megaphylogenies,
although it is clear that “phylogenomic megaphylogenies” have the potential to yield a strongly
supported tree when genome-scale data become available for a sufficient number of species.

Table 1. Phylogenomic studies of birds considered for use in this supertree 1.

Study Focal Group # of Species Used as Source Tree? Loci Targeted 2

Faircloth et al. [55] NEORNITHES 9 2.5K UCE probe set
McCormack et al. [36] NEOAVES 33 YES 2.5K UCE probe set

Baker et al. [56] PALAEOGNATHAE 7 Subset of Faircloth et al. [55] loci
Jarvis et al. [37] NEORNITHES 48 YES Whole genomes
Sun et al. [40] Phasianidae (peafowl) 15 5k UCE probe set

Prum et al. [38] NEORNITHES 197 YES AHE probe set
Bryson et al. [57] Passerellidae 30 YES 5k UCE probe set
Hosner et al. [58] Cracidae 23 5k UCE probe set
Hosner et al. [21] Phasianidae 90 5k UCE probe set

Manthey et al. [59] Piranga 11 YES 5k UCE probe set
McCormack et al. [22] Aphelocoma 1 (3) 5k UCE probe set
Meiklejohn et al. [60] Phasianidae (gallopheasants) 18 5k UCE probe set

Ottenburghs et al. [61] Anatidae–Anserini 19 YES Whole genomes
Persons et al. [62] Phasianidae (grouse) 11 5k UCE probe set
Zarza et al. [63] Aphelocoma 3 YES 5k UCE probe set
Burga et al. [64] Phalacrocorax 7 YES Whole genomes

Hosner et al. [42] Phasianidae 115 YES 5k UCE probe set
Reddy et al. [39] NEORNITHES 235 YES legacy with data mining
Wang et al. [65] Phasianidae 20 YES 5k UCE probe set
White et al. [66] Nyctibiidae 12 YES 5k UCE probe set

Yonezawa et al. [67] PALAEOGNATHAE YES legacy with data mining
Andersen et al. [68] Alcedinidae 21 YES 5k UCE probe set
Bruxaux et al. [69] Goura 6 YES Subset of UCE and AHE loci
Campillo et al. [70] Arachnothera 17 YES 5k UCE probe set

Chen et al. [71] Phasianidae 27 YES 5k UCE probe set
Musher & Cracraft [72] Pachyramphus 18 YES 2.5K/5k UCE probe set
Smith et al. 2018 [73] Psittaculidae–Loriini 54 YES 5k UCE probe set

Younger et al. [74] Newtonia 4 YES 5k UCE probe set
Sackton et al. [75] PALAEOGNATHAE 15 YES Whole genomes

1 Redundant trees were omitted. 2 UCE (Ultraconserved Element) probe sets are described at https://www.
ultraconserved.org/; The AHE (Anchored Hybrid Enrichment) probe set was used by Prum et al. (2015).

As phylogenomic data are rapidly accumulating, a remaining question is how to best leverage those
data to build taxon-rich phylogenies for many taxonomic groups, including birds. The supermatrix
approach has obvious appeal since it simply involves combining sequence data and conducting
standard phylogenetic analyses. However, supermatrix analyses require at least some overlapping
loci among studies (Figure 1a). Producing the supermatrices is conceptually straightforward if WGS
data are available, since loci of interest can be extracted from the genome assemblies. This is not the
case for data generated by reduced-representation sequencing. At this time, most (but not all) avian
phylogenomic studies have used ultraconserved element (UCE) sequence capture (Table 1). However,
even within UCE studies, two different probe sets targeting different numbers of UCE loci have been
used (Table 1). While continued data collection may permit the eventual construction of large data
matrices with many overlapping loci, those datasets are currently unavailable for birds (and many
other groups of organisms). There is an additional problem that analyzing supermatrices with limited
sequence overlap among loci often yields large numbers of equally optimal trees, a phenomenon
referred to as “terraces in phylogenetic treespace” [76–78]. Finally, the computational burden imposed
by phylogenomic supermatrix analyses, both for matrix assembly and for the tree searches, makes it
burdensome to update supermatrix phylogenies as additional phylogenomic data become available.

https://www.ultraconserved.org/
https://www.ultraconserved.org/
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overlap in source trees are necessary. The source trees shown are sufficient to yield the parts of the 
true species tree with solid lines (assuming the source trees are accurate). Problematic source trees are 
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impossible to place the non-overlapping taxa; (2) type II trees include a taxon (J’) absent from other 
source trees that is a close relative of a taxon (J) in other informative source trees, in this case J and J’ 
may not emerge as sister taxa; and (3) type III (not shown) are cases in which a potential source tree 
does not share any taxa with any other source tree. Including additional source trees with appropriate 
taxa (if they are available) will render types I and III trees informative. Type II trees often reflect 
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Figure 1. Challenges for megaphylogeny construction. (a) Supermatrix analyses often use sparse data
matrices. The box shows part of the BigBird data matrix (Burleigh et al. 2015) with taxa plotted on the
x-axis and loci on the y-axis. Sampled loci are black and missing data are white. The imperfect overlap
of loci means some taxa will be placed using only one or two loci. Moreover, some sister taxa may not
share any loci. (b) Supertree analyses do not require overlapping loci but specific patterns of taxon
overlap in source trees are necessary. The source trees shown are sufficient to yield the parts of the true
species tree with solid lines (assuming the source trees are accurate). Problematic source trees are of
three types: (1) type I trees have only one taxon present in the other source trees, making it impossible
to place the non-overlapping taxa; (2) type II trees include a taxon (J′) absent from other source trees
that is a close relative of a taxon (J) in other informative source trees, in this case J and J′ may not emerge
as sister taxa; and (3) type III (not shown) are cases in which a potential source tree does not share any
taxa with any other source tree. Including additional source trees with appropriate taxa (if they are
available) will render types I and III trees informative. Type II trees often reflect taxonomic changes
that split species or cases where different studies use closely related but distinct taxa (e.g., congeners).
Enforcing constraints that include a J + J′ clade can solve the problems caused by type II trees.

Supertrees get around many of the limitations of supermatrices; they do not require overlapping
loci and they can be very computationally efficient. The overarching goal of this study is to examine the
feasibility of building a “phylogenomic supertree” of birds that can be updated rapidly as additional
trees based on large-amounts of sequence data are published. To accomplish this goal, we identified
source trees generated using sequence capture and WGS (Table 1) and we combined those trees using
two computationally efficient supertree methods. Supertrees require overlapping taxa (Figure 1b);
since the available phylogenomic studies for birds have limited overlap (Figure 2), for this initial
attempt we also included three avian megaphylogenies [43,44,54] to “stitch” the phylogenomic studies
together into a single tree. Then we compared the supertree to those megaphylogenies to determine the
ways in which phylogenomic data have altered our existing hypotheses about avian evolution. Finally,
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we used a combination of molecular data and the fossil record to establish a temporal framework for
our supertree. Our results show that combining data from sequence capture with other sources of
phylogenomic data will allow rapid progress toward the goal of a strongly supported phylogenomic
supertree of life.
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Figure 2. Taxon sampling for phylogenomic studies. (a) Histogram showing the number of taxa in each
source tree. (b) Matrix occupancy graph. Lines indicate taxa present in each source tree. Taxa are sorted
taxonomically, first by major clade (bar at the bottom of the graph) and then by order. Most taxa are
present in at least one of the backbone trees (gray, top of the graph). In contrast, many phylogenomic
source trees (black and red) have limited taxonomic overlap; this is especially true for trees based on
whole-genome sequencing data (red). It is also clear that many phylogenomic trees are limited to
specific taxonomic groups.

2. Materials and Methods

2.1. Source Tree Selection and Taxonomic Reconciliation

We identified 30 published phylogenomic trees (Table 1), including two studies [39,67] that
extracted large amounts of “legacy” data (loci used for older Sanger sequencing studies [79]) from
genome assemblies. Those studies allowed us to include taxa with published genome assemblies that
were not included in other source trees such as the extinct elephant birds (order Aepyornithiformes; [67]).
When studies were redundant (i.e., based on sequence data that overlap extensively with the data used
to generate another tree), we chose the most taxon-rich tree as the source tree. Ultimately, we used 22
source trees (Table 1). Taxon names were converted to those in the IOC World Bird List (v. 7.3) [80].
The species names for extinct taxa included in our supertree (elephant birds and moas) were added
to our working taxonomy. There were also two cases in which a species recognized by IOC was not
monophyletic based on the inclusion of multiple individuals in the source study; we created a new
taxon name for those taxa by appending the subspecies (one case) or geographic region (one case) to
the original name. This resulted in 707 taxa sampled in these source trees.
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Because the phylogenomic trees included had very few overlapping taxa (Figure 2), we used three
avian megaphylogenies [43,44,54] (hereafter called BigBird, Brown, and Jetz) as backbones to link the
phylogenomic source trees together. For the Jetz backbone [54], we downloaded 1000 trees with the
Hackett et al. [8] constraints (on 27 September 2018) for the 677 taxa that were also present in our
source trees from http://birdtree.org and generated the majority rule extended (“greedy”) consensus of
those trees. For the BigBird backbone [43], we extracted a subtree of the Burleigh et al. [43] maximum
likelihood (ML) tree limited to the 598 taxa that were also in the phylogenomic source trees. For the
Brown backbone [44], we extracted the 689 taxa that overlapped with our phylogenomic source trees.

2.2. MRP and MRL Supertree Searches

We used matrix representation with parsimony (MRP) and matrix representation with likelihood
(MRL) to generate supertrees. We converted the source trees to binary matrices using the Baum–Ragan
coding method [81,82] in CLANN [83] and analyzed those data matrices using PAUP* 4.0a163 [84] for
MRP analyses and IQ-TREE 1.6.3 [85] for MRL analyses. We used the parsimony ratchet [86] to search
treespace for our MRP analyses; the ratchet is useful when tree searching is slowed by long periods of
branch swapping on large islands of equally parsimonious trees. We used “ratchblock” (a program
originally used by Yuri et al. [87] that is now available from https://github.com/ebraun68/ratchblock)
to generate a PAUP block with instructions for the ratchet searches. The instructions in the PAUP
block generated a starting tree by stepwise addition, increased the weights for sets of randomly chosen
characters to two, and subjected the reweighted data matrix to branch swapping, holding a single tree
at any time (multrees = no). After a short round of branch swapping, the original (equal) weights were
restored, another round of branch swapping was conducted, and the tree was saved. The optimal
tree from this random reweighting-branch swapping procedure was then used as the starting tree
for another cycle of reweighting and branch swapping. The search was completed by conducting a
final round of tree bisection and reconnection (TBR) branch swapping (using “set maxtrees = 1000
increase = no”) on the shortest trees identified by all ratchet cycles. For this study, we conducted
five searches, each with 100 ratchet replicates, that reweighted different percentages of characters
(15%, 20%, 25%, 25%, and 30%). We collapsed branches to form polytomies if the minimum branch
length was zero (pset collapse = minBrlen). We viewed the strict consensus of all MP trees as the
phylogenomic supertree.

MRL [88] is analogous to MRP, but it uses the symmetric two-state model (the Cavender-Farris-
Neyman [CFN] model; [89–91]) to analyze the Baum–Ragan matrix. For MRL, we used the options “-st
BIN” and “-m JC2+FQ+G4” in IQ-TREE (note that the CFN model is called “JC2” in IQ-TREE).

Several methods to examine support for supertrees have been proposed (e.g., the QS method [92],
its variants [93], and bootstrapping methods [94,95]). However, only some are useful for the current
problem given the limited degree of overlap among our source trees. We used two approaches on the
supertree based on all three backbones: 1) a simple bootstrap approach, and 2) MRL analysis with
branch support values. For the bootstrap approach, we built 100 Baum–Ragan data matrices that each
included a single tree from the set of bootstrap trees distributed for the BigBird backbone and for
three phylogenomic trees (Jarvis [37], Prum [38], and Reddy [39]). For Jetz, birdtree.org distributes
samples from a Bayesian Markov chain Monte Carlo (MCMC) chain (not bootstrap trees); we used the
first 100 trees that we downloaded (thus, our bootstrap analysis actually includes bootstrap trees and
trees sampled from an MCMC chain). The optimal tree was used for all other source trees. Then we
analyzed the Baum–Ragan matrices using MRP and MRL. For the second approach, we tested two
computationally efficient methods to examine ML branch support in our MRL tree: (1) the approximate
likelihood ratio test (aLRT; [96]), and (2) the Bayesian-like transformation of the aLRT (aBayes; [97]).
Those tests were conducted in IQ-TREE using the “-alrt 0” and “-abayes” options.

We analyzed seven supertree matrices. All matrices included the phylogenomic trees, but the
matrices differed in which backbone trees were included. Three matrices included a single backbone tree,
three included two of the three backbone trees, while one included all three backbone trees. Based on

http://birdtree.org
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initial results, we also generated one constraint tree that enforced monophyly of most IOC orders
and uncontroversial groups (e.g., Palaeognathae, Neognathae; the constraint tree is in Supplementary
Materials). There are two cases for which monophyly of IOC orders is controversial (Caprimulgiformes
and Pelecaniformes); the taxa in these orders were not constrained to be monophyletic in the constraint
tree. All source trees, including the megaphylogeny backbone trees and the constraint trees, are
available in Supplementary Materials. We used this constraint tree only for an analysis with the
BigBird-only backbone (see below).

We weighted the input trees based approximately on the amount of underlying data. We wanted
the phylogenomic trees to dominate, so we gave the three backbone trees (Jetz, BigBird, and Brown) a
weight of one. All other input trees were weighted more heavily, with input tree weighting scaled to
the number of backbone trees in an analysis (i.e., if a matrix contained a single backbone, then the
base weights were multiplied by one; if two backbone trees the base weights were doubled, and for
the analysis with all three backbone trees the base weights were multiplied by three). The two trees
including extensive legacy data (Reddy [39] and Yonezawa [67]) were each given base weights of two,
while Prum [38] (which contained 259 loci) was given a base weight of three. The UCE trees were each
given a base weight of four, while the WGS trees had a base weight of eight. McCormack et al. [36]
reported two UCE trees based on analyses of different (but strongly overlapping) data matrices; both
trees were included as source trees, but we assigned each of them a base weight of two (totaling four,
equal to other UCE trees). In all cases, we weighted trees by including each source tree the appropriate
number of times in the file used as input for CLANN.

We used normalized Robinson-Foulds (RF) distances [98] to examine differences among consensus
trees. Briefly, the “treedist” function in PAUP* was used to calculate symmetric tree distances (=2 × RF),
which were then divided by the maximum possible symmetric distance for two fully resolved trees
with the same number of taxa as the supertree. For comparisons to the megaphylogenies, we pruned
the supertrees to overlapping taxa before calculating normalized RF distances. We also used these RF
distances to generate a “tree-of-trees” (a cluster analysis showing the similarities among trees). This
was accomplished by converting the RF distance matrix to NEXUS format and then clustering the trees
by neighbor joining in PAUP*.

2.3. Estimating Branch Lengths and A Calibrated Time Tree

We estimated branch lengths in IQ-TREE using data matrices that comprise the mitochondrial gene
regions cytochrome b (CYB) and NADH dehydrogenase subunit 2 (ND2) (Supplementary Materials).
That matrix was generated by extracting those taxa with CYB and ND2 data from the BigBird [43]
data matrix, adding additional sequences from GenBank [99], and supplementing the data with new
sequences extracted from a large-scale avian sequence capture dataset we are currently analyzing.
These new CYB and ND2 sequences were assembled from “off-target” reads from UCE sequence capture
efforts as described previously [65,100,101]. This allowed us to construct a data matrix comprising 655
taxa and 2184 aligned base pairs (bp). Since some taxa were represented by a very limited amount
of sequence data, we constructed a second mitochondrial alignment that excluded taxa that had less
than 1638 bp (less than 75% of the total region); this resulted in an alignment with 367 taxa. For both
datasets, we partitioned the data by gene and codon position and estimated the model parameters and
branch lengths using linked branch lengths with partition-specific rates (the “-spp” option) assuming
our primary supertree topology (the “-m TESTONLY” option).

Molecular branch lengths, even when they exhibit substantial among-lineage variation, can be
used to establish divergence times when information from the fossil record is incorporated [102].
Thus, the trees with branch information from mitochondrial data were time-calibrated using
autocorrelated penalized likelihood in treePL [103], which implements the penalized likelihood
method of Sanderson [104]. We applied 22 fossil calibrations (Appendix A) following best practices
proposed by Parham et al. [105]; only 18 of these were used for analysis of the 367 taxa. With both
minimum and maximum dates assigned to each calibrated node (i.e., the most recent common ancestor
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[MRCA] of two chosen species, see Appendix A), we obtained the optimal parameter settings using
the “prime” option and dated the tree using the best smoothing value (10 for the analysis using 655
taxa, and 0.01 for the analysis using 367 taxa) determined by random subsample and replicate cross
validation (RSRCV).

3. Results

3.1. Meta-Analysis of Phylogenomic Trees Yields A Well-Resolved Supertree

We assessed the impact of each backbone tree on the supertree. Use of BigBird as the sole backbone
tree yielded trees that were relatively poorly resolved (Supplementary Materials). BigBird had the
fewest overlapping taxa with our phylogenomic trees (598, less than 85% of the total taxa), meaning
that some taxa were only present in a single tree and could therefore be placed almost anywhere in the
phylogeny. Restricting our analyses to a set of source trees that included only the relatively taxon-poor
BigBird backbone resulted in “problematic source trees” (Figure 1b) and the supertree included some
radically misplaced taxa (e.g., placement of taxa in Vangidae outside Passeriformes). The relative RF
distances from the unconstrained BigBird-only supertree to those supertrees that contained at least one
backbone tree other than BigBird ranged from 0.0972 to 0.1433 (Supplementary Materials). In contrast,
the relative RF distances for trees with at least one backbone tree other than BigBird did not overlap;
they ranged from 0.0071 to 0.0723 (Supplementary Materials). Even when a constraint was applied,
the BigBird-only matrix yielded less resolved trees than analyses using other backbones. Use of more
taxon-rich backbones (Jetz or Brown), or combinations of backbones, improved resolution (Table 2).
Analyses based upon the Jetz backbone had the greatest resolution overall, probably reflecting the
fact that the topology we used as the Jetz backbone was fully resolved whereas the Brown backbone
included polytomies. The slightly reduced resolution in analyses using two or three backbone trees
was likely due to conflict among the backbone trees. Given that using all three backbones emphasized
uncertainty among relationships in the megaphylogenies, we focused our remaining analyses on the
matrix that included all three backbones even though these trees exhibited slightly lower resolution.

Table 2. Supertree resolution given different backbone trees 1.

Backbone: Resolved % Branches
Method BigBird Brown Jetz Branches Collapsed

MRP + + + 696 1.28%
MRP + 642 8.94%
MRP + 687 2.55%
MRP + 698 0.99%
MRP + + 689 2.27%
MRP + + 691 1.99%
MRP + + 694 1.56%
MRL + + + 704 0.14%
MRL + 690 2.13%
MRL + 698 0.99%
MRL + 704 0.14%
MRL + + 703 0.28%
MRL + + 705 0.00%
MRL + + 703 0.28%

MRP bootstrap + + + 703 0.28%
MRL bootstrap + + + 705 0.00%

1 Continued on the next page.

Overall, MRP and MRL trees showed many similarities (Supplementary Materials). All trees
contained the seven major higher-level clades identified by Reddy et al. [39], with the exception of
the unconstrained analyses that used BigBird as the sole backbone. However, while the higher-level
structure of the MRP trees (Figure 3) was identical to the Jarvis et al. [37] “total-evidence nucleotide
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tree” (TENT), several of the MRL analyses showed a different placement for Gruiformes (cranes, rails,
and allies). Despite overall similarities between MRP and MRL supertrees, the optimal MRP trees
cluster separately from the optimal MRL trees. (Figure 4).

Our use of megaphylogenies (i.e., BigBird, Jetz, and Brown) as backbones to link phylogenomic
trees together into a single supertree raises an important question: to what degree does the phylogenomic
supertree simply reflect the backbone trees? If the supertrees simply reflect the backbone trees, then
any errors shared among the backbones could be propagated to the supertrees. The megaphylogeny
backbones could share errors because they are not strictly independent. For example, the Jetz tree used
the Hackett et al. [8] topology as a backbone constraint and BigBird included a large amount of data
from Hackett et al. [8]; the Brown tree was a synthesis of prior trees, including Hackett et al. [8] and the
Jetz tree. After pruning our trees to the 584 taxa common to all three backbone trees, we found that
all of our supertrees were quite similar to each other, and that distances between the supertrees and
the backbone trees were much larger (Figure 4; a spreadsheet with RF distances is in Supplementary
Materials). Although we cannot rule out the possibility that errors common to all three backbone
trees are present in our supertrees, it seems clear that the phylogenomic trees dominate the supertree
topologies. This likely reflects the high weight that we gave our phylogenomic trees, acknowledging
the large amount of sequence data used to generate those trees and thus the greater likelihood that
they reflect the underlying species tree.

There was low bootstrap support for higher level relationships in both MRP and MRL supertrees,
though there was much higher support within well-sampled clades and for the seven higher level clades
identified in Reddy et al. [39]. Interestingly, the bootstrap consensus trees from both MRP and MRL
were more similar to each other than to the optimal MRP or MRL trees (Figure 4). One higher-level
relationship shared by the MRP and MRL majority rule extended bootstrap consensus trees was
a rearrangement in clade IV (Otidimorphae) that placed Musophagiformes (turacos) sister to an
Otidiformes-Cuculiformes (bustard-cuckoo) clade. Use of the rapid MRL support metrics (aLRT and
aBayes) resulted in high (and likely inflated; see Discussion) support at all nodes.
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Relationships among families within Apodiformes and Caprimulgiformes, emphasizing paraphyly 
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Figure 3. Phylogenomic supertree generated by matrix representation with parsimony (MRP) analysis
using all three backbone trees. (a) Large-scale structure with support from the MRP bootstrap analysis.
All nodes received 100% bootstrap support except as noted. The line for Apodiformes is dashed; we did
this to indicate that the ordinal circumscriptions in the IOC World Bird List (v. 7.3) nest Apodiformes
within a paraphyletic Caprimulgiformes, assuming the supertree topology is correct. Superordinal
groups (the “magnificent seven”) are numbered following Reddy et al. [39]. (b) Relationships among
families within Apodiformes and Caprimulgiformes, emphasizing paraphyly of the latter. A complete
supertree with all species labeled is available in Supplementary Materials.
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Figure 4. Clustering diagram emphasizing the similarities and differences among supertrees and
backbone megaphylogenies. This “tree-of-trees” was generated by clustering Robinson-Foulds
distances [98] among trees by neighbor joining. The tree-of-trees emphasizes the clustering of
supertrees by method (i.e., there are three major groups: matrix representation with parsimony
[MRP], matrix representation with likelihood [MRL], and extended majority rule consensus of bootstrap
supertrees) and the distance between the supertrees and the backbone trees. The MRP tree for all
backbones is emphasized because much of our discussion uses this tree; all trees are available in
Supplementary Materials.

3.2. Rapid Branch Length Estimation and Divergence Time Estimation

Most supertree methods (including MRP and MRL) are unable to generate meaningful branch
length estimates. However, we were able to identify mitochondrial sequence data for 655 (93%) of the
taxa in our matrix that we used for branch length estimation, though only 367 taxa (52%) had at least
1638 sites. Branch length estimates were variable (Figure 5), with average branch lengths being slightly
shorter when using reduced numbers of taxa with less missing data (see treefiles in Supplementary
Materials). Since large amounts of missing data can alter branch length estimates, we focused on the
branch lengths estimated from the taxon-reduced dataset.

Using branch lengths estimated with the taxon-reduced matrix, our treePL analysis (Figure 6)
corroborated the model, now supported in many other studies [37,38,106,107], in which Neoaves
underwent an explosive radiation close to the Cretaceous-Paleogene (K-Pg) boundary. Not surprisingly,
use of the more taxon-complete sequence matrix that included more missing data resulted in an older
estimated radiation of Neoaves (Supplementary Materials).
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Figure 5. Estimates of branch lengths for the matrix representation with parsimony (MRP) phylogenomic
supertree. Branch lengths reflect analysis of the mitochondrial genes cytochrome b and NADH
dehydrogenase subunit 2 using the GTR+I+Γ model and six partitions (corresponding to the three
codon positions within each gene). (a) Unlabeled tree based on reduced data matrix (taxa with >25%
missing data removed) with silhouettes to indicate major lineages. Colors are identical to those in
Figure 3; a key to the color scheme is also available in Supplementary Materials. To emphasize the long
branches for Turnicidae (hemipodes, also known as buttonquails) and Tinamiformes (tinamous) we
include labeled subtrees for Charadriiformes (b) and Palaeognathae (c) extracted from the tree based
on all data. A comparison of the Charadriiformes and Palaeognathae subtrees to similar trees based on
nuclear sequence data is available in Supplementary Materials.
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Figure 6. Timetree generated by penalized likelihood (as implemented in treePL), using the
matrix representation with parsimony (MRP) phylogenomic supertree with branch lengths based on
mitochondrial data. The timescale is presented below the tree (the Quaternary period is omitted).
Colors are identical to those in Figure 3.

4. Discussion

Supertree methods provide a computationally efficient means to integrate published phylogenomic
studies of birds into a larger synthetic tree. At this point the overlap among phylogenomic trees is
relatively limited, making it difficult to use standard supertree methods that use large numbers of
source trees. To solve issues of limited overlap, we used megaphylogenies to unite the input trees.
As more phylogenomic studies become available, the use of megaphylogeny backbones may become
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unnecessary and, if megaphylogenies are used, they are likely to have less influence on the overall
topology of the supertrees. When sets of bootstrap trees (or samples from a Bayesian MCMC chain)
are available for source trees it is also possible to incorporate those bootstrap trees into the supertree
analysis and estimate the support for specific relationships. We also show that it is possible to obtain
robust branch length estimates and generate a timetree consistent with other recent studies. Although
we have focused on birds, which are extensively studied and therefore have relatively large amounts of
data available, the resources we used (megaphylogenies and extensively sampled organellar sequence
data) are available throughout the tree of life; if the phylogenomic trees are available, similar approaches
could be used in other groups.

4.1. Strengths and Weaknesses of the Phylogenomic Supertree Approach

Much has been written regarding the choice among methods for generating large-scale
phylogenies [108]. One major advantage that supertree methods offer is that they are very
computationally efficient, while supermatrix analyses intrinsically impose a substantial computational
burden [109,110]. The analyses for this study were conducted on a desktop computer (a 2.6 GHz Intel
Core i5 Mac mini) and a laptop (3.1 GHz Intel Core i5 MacBook Pro) and they used less than one week
of total compute time, as opposed to the >400 years used to analyze the Jarvis et al. data [37] (expressed
as the equivalent runtime for a single processor). The maximum parsimony criterion (used for MRP)
is orders of magnitude faster than analyses using the maximum likelihood (ML) criterion [111,112].
However, supertree analyses using the ML criterion (i.e., the MRL approach) remained quite fast given
the sizes of the data matrices used in this study. Given the existence of many other computationally
efficient supertree construction algorithms [113,114], we fully expect supertree methods to remain
much more computationally efficient than supermatrix methods.

However, the advantages of supertree methods also come with costs (for detailed discussion
see [95,115]). Ideally, there should be a direct connection between the results of any phylogenetic analysis
and the original character data (e.g., aligned sequences), though using supertrees for meta-analysis
(as we have done here) breaks this connection. In addition, supertrees can yield a phylogeny that does
not acknowledge “hidden support” for clades. Hidden support is the observation that certain clades
can have greater character support in combined analyses than they would in separate analyses of the
partitions in the original dataset [116,117].

These arguments might seem to favor the use of supermatrix methods to construct
megaphylogenies. However, it is important to emphasize that the sparse supermatrices used in
current large-scale supermatrix studies (e.g., Figure 1a) also present analytical difficulties [76].
Moreover, supertree methods have benefits that go beyond their computational efficiency. For instance,
supertree approaches can combine trees generated by rigorous phylogenetic analyses with taxonomic
information [53]. At this time, there are few large taxonomic groups for which all taxa have associated
character data. Thus, the supertree approach is the only method able to build trees including all named
taxa in major clades [44,49] or even the entire tree of life [118]. Of course, including taxa using only
taxonomic information is a double-edged sword; it can be useful when these are the only available
information regarding the placement of a taxon, but there are also many examples of cases where
using taxonomies to place data deficient taxa leads to inaccuracies [62,119–121]. The obvious next
step in our efforts to understand the tree of life is to collect data (ideally phylogenomic data) for all
species that remain data deficient. Yet, collecting the data necessary to construct truly phylogenomic
megaphylogenies for all named species will present many challenges; the supertree approach that we
have provides a useful estimate of that phylogeny for now.

4.2. Different Roles for Backbone Trees and Phylogenomic Trees

We note that the supertree approach we used differs in an important way from many others:
we explicitly broke our source trees into “backbone trees” and “phylogenomic trees” whereas many
supertree studies simply combine as many source trees as possible. Using a large number of source
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trees should minimize the problems associated with source tree overlap (Figure 1b). Because our
goal was to generate a tree that summarizes phylogenomic studies, we leveraged published avian
megaphylogenies (whether they reflect supermatrix and supertree analyses) to link our currently
limited pool of source trees. However, there were some challenges associated with using backbone
trees. Even a relatively taxon-rich backbone, like the BigBird tree (85% of all taxa sampled in source
trees) was not sufficient to produce a well-resolved supertree. While using constraints improved
analyses that only included the BigBird backbone, the BigBird-only trees still exhibited relatively large
RF distances from the other supertrees that we generated (note the relatively long terminal branches for
the BigBird trees in Figure 4), suggesting that the BigBird-only supertrees were relatively incongruent
with our other trees. Overall, this indicates that one should use backbone trees with as many taxa as
possible or use multiple backbone trees, as we did here. However, the need for backbone trees should
diminish as more phylogenomic studies are published because this will increase the taxonomic overlap
among source trees; we expect the increasing overlap among phylogenomic trees to make the choice of
the backbone trees less challenging (or unnecessary) over time.

Establishing the most appropriate weights for the source trees is also challenging. It was clearly
appropriate to use low weights for the backbone trees since they were based on relatively limited
data. However, the most appropriate weights for the phylogenomic trees is unclear. For this study we
used approximate size of the datasets used to generate weights for the source trees. However, one
might argue that other factors should be used to determine weights. For example, if taxon sampling
beneficially impacts the estimate of phylogeny, one might wish to weight taxon-rich trees such as the
Prum et al. [38] tree higher than relatively taxon-poor trees like the Jarvis et al. [37] TENT. On the other
hand, if commonly used analytical methods yield more accurate trees when applied to non-coding
data (cf. Reddy et al. [39]), it might be more appropriate to down-weight Prum et al. (2015), which
is primarily coding data, and eschew the Jarvis et al. [37] TENT (which is a mixture of coding and
non-coding data) in favor of either the intron tree or the UCE tree from the latter study (both of
which reflect analyses of largely non-coding data). Other methods to examine data quality, such as
phylogenetic informativeness [122] or various metrics of model adequacy [123] could also be applied.
Ultimately, weighting source trees requires judgement regarding their accuracy. For this study, we felt
that simply weighting the source trees by the approximate size of the underlying dataset was the most
objective way to summarize these published avian phylogenomic studies. As more phylogenomic
trees become available, with greater overlap among trees, it may be of interest to explore alternative
weighting schemes to explore their impact on the supertree estimation.

4.3. MRP and MRL Support Values

Bootstrap support values were relatively low for higher-level relationships in the supertree.
The basis for these support values differs from those estimated using sequence data. When aligned
DNA sequences are used directly, bootstrap values reflect the spectrum of site patterns in the multiple
sequence alignments used in the analysis. By contrast, the supertree bootstrapping approach we used
is likely to reflect both the impact of limited overlap among source trees and the limited support of
clades in the backbone trees. It is encouraging that the simple approach we used yielded support
values that reflect the uncertainty observed in other studies.

It can be challenging to use bootstrapping to examine support in meta-analyses because many
studies only provide the optimal tree (typically with a support value included as node labels or branch
lengths) or may use methods that do not generate a sample of trees [124]. Our approach requires a
set of sampled (e.g., bootstrap or MCMC posterior) trees. Once a larger number of phylogenomic
studies are available for birds, it may be possible to simply bootstrap the optimal or summary (e.g.,
maximum clade credibility) source trees (cf. [94]), but that requires a large number of source trees
with substantial overlap. An alternative approach for estimating uncertainty would be to conduct a
supertree analysis using gene trees from available studies as source trees. The growing popularity
of multispecies coalescent (“species tree”) methods for phylogenomic analyses [125] often results in
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reporting of gene trees; if those gene trees are available electronically, it would be straightforward to
bootstrap them during supertree construction. The observation that some supertree methods appear to
be useful estimators of the species tree when collections of gene trees are used as input [126] suggests
that using gene trees for some (or all) of the source trees in supertree meta-analyses might have an
additional benefit: the supertree could be a reasonable estimate of the species tree. ASTRAL might be
especially useful in this context; although it is generally viewed as a multispecies coalescent method it
is actually a supertree method with two important properties [126]. First, it is a consistent estimator
of the species tree as long as the input trees are gene trees [126]. Second, it provides useful support
values (local posterior probabilities [124]) when gene trees are used as input trees. These properties
would make it an excellent choice for generating a phylogenomic supertree if gene trees are available.
However, if they are not available, it does not have obvious benefits relative to MRP and MRL.

For MRL analyses, the aLRT and aBayes tests [96,97] can also be used to examine support.
Both tests are computationally efficient and can be used to rapidly update supertrees as additional
phylogenomic trees become available. Support values from both aLRT and aBayes analyses were
typically high in our analyses, with most nodes having the maximum support possible (>97% and >94%
nodes of have support of 1.0 in the aLRT and aBayes analyses, respectively; Supplementary Materials),
failing to reflect the underlying uncertainty in some of these relationships. Branch support in the aLRT
and aBayes methods reflects the likelihood difference between the optimal tree and the two nearest
neighbor interchanges for that branch. Our hope was that these analyses would provide a rapid means
to highlight two different cases: (1) those in which the backbone trees conflict but the phylogenomic
trees provide no information, and (2) those in which there is conflict among the phylogenomic trees.
However, the small number of nodes with low support relative to those revealed by the bootstrap
(>84% and >87% of resolved nodes have support of 100% in the MRP and MRL analyses, respectively;
Supplementary Materials) suggests the bootstrap is a better approach. For studies like ours where
there is little overlap among trees, there is little potential for conflict, and these support metrics may
not yield meaningful results.

4.4. Branch Lengths and Divergence Times

Although methods to assign branch lengths to supertrees without using molecular data have been
proposed [127–131], we used mitochondrial data to estimate branch lengths (specifically, ND2 and
CYB, which are the best-sampled mitochondrial gene regions [43]). Mitochondrial data have already
been collected for many birds [43] and both sequence capture and WGS (even low coverage WGS;)
often produce nearly complete mitogenome sequences [65,71,100,101,132,133]. Thus, mitochondrial
sequences are available from many taxa for branch length estimation, and additional sequences are
expected to accumulate. Our branch lengths were similar (in relative terms) to those estimated by
large-scale avian studies using nuclear sequence data [8,37,38,134]. For example, taxa that exhibit
exceptionally long branches in our tree include Turnicidae (hemipodes, also known as buttonquails;
see Figure 5b) and Tinamiformes (tinamous; see Figure 5c); both of these taxa exhibit long branches
in trees based on nuclear data [8,38,107,134]. Our relative branch lengths also align closely with the
inferred substitution rates presented by Berv and Field [135] (see their Figure S2), providing additional
support for the validity of our approach.

The availability of branch lengths allowed us to estimate divergence times for the major lineages
of birds. Since our goal was to explore computationally efficient methods, we used treePL, a fast rate
smoothing program that performs well in simulations for as many as 10,000 tips [103]. treePL analysis
of the reduced taxon set tree (which had limited missing data) resulted in a timetree that corroborated
several recent studies [37,38,106,107], showing that Neoaves underwent an explosive radiation close to
the K-Pg boundary. However, our estimates of divergence times appeared to be sensitive to missing
data; treePL analysis of the tree including all taxa with mitochondrial sequence yielded estimates
for the origin of crown Neoaves that were greater than 70 million years ago (Ma; Supplementary
Materials). Missing data appeared to have an even larger impact on the estimated times for the origins
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of crown Palaeognathae and crown Galloanseres (Supplementary Materials), in sharp contrast to the
dates that are tightly clustered near the K-Pg boundary when taxa with limited data are excluded
(Figure 6). Estimates of divergence times for avian lineages have varied among studies [37,38,136]
and there are indications that divergence time estimates generated using mitochondrial data exhibit
systematic differences from those based on nuclear data [136]. However, our divergence time estimates
are fairly close to those in other recent publications (e.g., our estimated time for the diversification of
Neoaves was very similar to the estimate in Jarvis et al. [37], somewhat older than the estimate in Prum
et al. [38], and within the ranges of the estimates from Ksepka and Phillips [136]). Therefore, we do not
view our analyses and results, which were chosen for computational efficiency, to be the final word.
Neveretheless, it is clear that our results are congruent with recent phylogenomic studies [37,38] in that
they contradict estimates that place much of the diversification of Neoaves in the Cretaceous [137,138].
The hypothesis that many lineages in Neornithes (extant birds) arose during the Cretaceous requires
mass survival across the K-Pg boundary; that hypothesis has become less tenable in light of recent fossil
evidence for a mass extinction of birds across the K-Pg boundary [139,140]. Our timetree can be added
to the growing body of molecular evidence that contradicts a Cretaceous radiation of Neornithes.

4.5. Taxonomic Flux—A Fundamental Challenge for Supertrees (and Supermatrices)

During the course of this study, the computational efficiency of supertree methods highlighted
the time-consuming nature of another step in phylogenetics: taxonomic reconciliation. Our efforts
to convert the taxonomies used in our source trees to a common set of names were challenging and
required substantial manual intervention. It is important to recognize that taxonomic reconciliation is
also necessary for supermatrix studies (for example, taxonomic difficulties presented a major challenge
for the BigBird study; E.L.B., personal observation). There are three types of changes to taxonomic
names that occur over time at the species level: (1) simple renaming; (2) lumping of previously separate
species; and (3) splitting existing species into two or more new species. The first typically reflects splits
or reassignments at the generic level. These changes are relatively straightforward to deal with because
they are a one-to-one replacement of names. However, generic reassignment can result in changes to
the gender of the specific epithet; this can make it challenging to trace names, especially when one
also has to consider the possibility of spelling errors. Changes in species circumscriptions (lumps and
splits) are more challenging. We are in a historical phase in avian taxonomy where splitting is more
common, due to improved recognition of cryptic species using genetic data and information from
fieldwork (e.g., improved equipment for sound recordings). There are suggestions that the number of
bird species may increase twofold (or possibly even more; [141,142]). These taxonomic splits create a
major problem for meta-analyses since they make it necessary to trace provenance of data at the level
of individual samples and assess the proper taxonomic assignment for those samples. This emphasizes
the need to make genomic data and tips in trees traceable to vouchered specimens in natural history
collections. Without direct links between sequence data and the names in trees that are derived from
those data, proper taxonomic assignment is impossible.

4.6. Moving Forward: OpenWings, B10K, and Other Phylogenomic Efforts

The ultimate goal of ongoing phylogenomic efforts is to estimate a phylogeny that includes all
extant species and as many recently extinct species as is feasible given available material. Our ability
to construct a phylogenomic supertree of birds with approximately 7% of currently named species
is certainly encouraging, although we acknowledge that the taxon sampling of our current tree is
highly uneven. This is because our supertree reflects the combination of source trees from global
efforts to understand the avian tree of life, such as Jarvis et al. [37] and Prum et al. [38], and
taxonomically focused phylogenomic source trees generated by focused efforts in specific laboratories
(the overrepresentation of Galliformes and Psittaciformes reflects projects in the R.T.K.-E.L.B and B.T.S.
laboratories, respectively). It is clear that these efforts need to be expanded, both for birds and for
other organisms.
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Efforts that will aid in the goal of inferring a species-level avian tree are underway, including
many ongoing and parallel phylogenomic studies for various taxonomic groups across the tree of life,
both at global scales [143–145] and in individual laboratories. Here, we highlight two ongoing efforts
to collect large-scale data for birds. The B10K project (described by Zhang [28]) plans to generate
complete genome assemblies for all named bird species. This ambitious approach is exciting and will
revolutionize our understanding of avian biology, but we expect the limited availability of high-quality
tissues to present major challenges for WGS efforts. The OpenWings project (www.openwings.org;
described by Pennisi [146]) has the potential to achieve rapid resolution of the avian tree of life, using
resources already at hand. OpenWings will focus on sequence capture of nuclear and mitochondrial
loci, leveraging genetic resources from frozen tissues or well-preserved study skins of vouchered
specimens in natural history collections. The overarching project goal is to collect new genomic data
from >8000 bird species and to integrate those data with existing, compatible UCE data sets to infer
a complete species-level avian tree of life. Importantly, the data will be openly available to other
researchers immediately after they have been generated and subjected to quality control. We expect
the rapid availability of data to minimize duplicate efforts among groups and allow the broader
ornithological community to maximize the utility of this genome-scale data collection effort for their
independent projects. Until the OpenWings project completes its data collection goals we plan to
update our phylogenomic supertree of birds regularly.
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Appendix A

Information on fossils used to calibrate the timetree (Figure 6). treePL uses two taxa to define each
node in the tree; the taxa used to define that node are listed in Supplementary Materials. All taxonomic
groups reflect the IOC World Bird List (v. 7.3) [80].

A.1. Calibrated Node: Crown Casuariiformes (Dromaius–Casuarius split)
Fossil Specimen: Emuarius gidju QM F45460
Phylogenetic Justification: Worthy et al. [147] recovered Emuarius as more closely related to Dromaius
than to Casuarius in a phylogenetic analysis. Codings for Emuarius were based on multiple specimens,
and key synapomorphies occur in the skull, tarsometatarsus, and scapulocoracoid. A scapulocoracoid
(QM F45460) is thus specified as the calibrating specimen.
Minimum Age Constraint: 24.5 Ma
Maximum Age Constraint: 58.7 Ma
Age Justification: The calibrating fossil is from Faunal Zone A at the Hiatus South Site of the Riversleigh
locality in Queensland, Australia. Based on biocorrelation to the faunas from the Etadunna and Namba
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Formations in South Australia [148], a minimum age matching the top of Chron 7r is applied, with
the numerical date selected from table 28.2 of Gradstein et al. [149]. The maximum is based on
the age of the oldest putative palaeognaths, which include middle-late Paleocene lithornithids from
North America [150] and the ratite Diogenornis, from the early Eocene of Brazil [151]. While the
precise phylogenetic relationships of these taxa are debated, none are plausibly nested within
crown Casuariiformes.

A.2. Calibrated Node: Stem Phasianidae (Phasianidae–Odontophoridae split)
Fossil Specimen: Palaeortyx cf. gallica PW 2005/5023a-LS
Phylogenetic Justification: Mayr et al. [152] described apomorphies including the well-developed
processus intermetacarpalis that support placement of Palaeortyx cf. gallica within crown Galliformes,
most likely as a stem group representative of Phasianidae. PW 2005/5023a-LS represents a nearly
complete skeleton and thus is selected as the calibrating specimen.
Minimum Age Constraint: 24 Ma
Maximum Age Constraint: 51.81 Ma
Age Justification: The fossil is from a maar lake deposit at Enspel, near Bad Marienberg in Westerwald,
Rheinland-Pfalz, Germany. These deposits are assigned to the MP28 biozone [153], the top of which is
used for the hard minimum age. The maximum is based on the age of the Green River Formation from
which multiple complete skeletons the stem galliform Gallinuloides wyomingensis have been collected.
This maximum encompasses other strata that have yielded good material of stem galliforms but no
convincing crown galliform material including the Messel Formation, Late Eocene horizons at Quercy,
and the London Clay Formation. The maximum also encompasses the ages of taxa that may possibly
represent crown galliforms but require additional study such as Procrax and Schaubortyx.

A.3. Calibrated Node: Stem Mirandornithes (Mirandornithes–Columbiformes split)
Fossil Specimen: Juncitarsus merkeli SMF A 295 (cast)
Phylogenetic Justification: Mayr [154] presented evidence for four synapomorphies linking Juncitarsus
to Podicipediformes + Phoenicopteriformes, and also listed primitive characters which rule out
placement of this taxon within crown Mirandornithes
Minimum Age Constraint: 46.6 Ma
Maximum Age Constraint: 61.6 Ma
Age Justification: The fossil is from the Messel Formation. A maximum age for the fossiliferous
deposits of the Messel Formation is provided by a 47.8 ± 0.2 Ma 40Ar/39Ar age obtained from the
basalt chimney below Lake Messel [155]. This date provides a maximum age for Lake Messel itself,
but a minimum age for the fossil must take into account time elapsed between the cooling of the
basalt and the deposition of the fossiliferous layers which occur higher in the section. Lacustrine
sediments are estimated to have filled in the maar lake that formed above this basalt chimney over
a span of approximately 1 Myr [155]. Accounting for sedimentation rate, the layers yielding avian
fossils (including SMF-ME 1883a+b) are most likely ~47 Ma in age [155,156]. When both the error
range associated with the dating of the basalt (±0.2 Ma) and the estimate of time spanned between
this date and deposition of the fossil (1 Ma) are incorporated, the hard minimum age for the fossil
is 46.6 Ma. We use the upper age range estimate reported for the oldest aquatic neoavian, Waimanu
manneringi as a maximum age.

A.4. Calibrated Node: Stem Steatornithidae (Steatornithidae–Nyctibiidae split)
Fossil Specimen: Prefica nivea USNM 336278
Phylogenetic Justification: Olson [157] discussed synapomorphies of Prefica and Steatornis, and a
sister group relationship between the two was supported by the phylogenetic analysis of Mayr [158].
Minimum Age Constraint: 51.81 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The fossil is from Fossil Butte Member, Green River Formation, Wyoming, USA.
These deposits are late early Eocene, and multicrystal analyses (sanidine) from a K-feldspar tuff
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(FQ-1) at the top of the middle unit of the Fossil Butte Member from Fossil–Fowkes Basin (locality:
N41◦47′32.2′′ W110◦42′39.6′′) have yielded an age of 51.97 ± 0.16 Ma [159]. The latest Cretaceous is set
as the soft maximum, corresponding to the age range of the oldest known neognathous bird Vegavis
iaii. No members of Strisores are known from Cretaceous deposits, indicating it is unlikely the highly
nested divergence between oilbirds and other Strisores had occurred before the Paleocene.

A.5. Calibrated Node: Crown Apodi (Apodidae–Hemiprocnidae split)
Fossil Specimen: Scaniacypselus wardi NHMUKA5430
Phylogenetic Justification: Phylogenetic analyses have consistently placed Scaniacypselus as the sister
taxon to extant Apodidae [160–162].
Minimum Age Constraint: 51 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The fossil is from Bed R6 of the Røsnæs Clay Formation of Ølst, Denmark. Thiede
et al. [163] assigned the upper calcareous beds of the Røsnæs Clay Formation, including R5 and R6
to nanoplankton biozones NP11 and NP12. Biostratigraphy supports correlation of the Røsnæs Clay
Formation to the European mammal reference biozone MP8 [164], which suggests an age >50 Ma [149].
A conservative minimum age of 51 Ma is proposed, based specifically on the estimated age of the
upper boundary of NP12, which is dated to 51 Ma [165]. The latest Cretaceous is set as the maximum,
corresponding to the age range of the oldest neognathous bird Vegavis iaii. No members of Strisores
are known from Cretaceous deposits, indicating it is unlikely the highly nested divergence between
swifts and hummingbirds had occurred before the Paleocene.

A.6. Calibrated Node: Crown Gruiformes (Ralloidea–Gruoidea split)
Fossil Specimen: Pellornis mikkelseni MGUH 29278
Phylogenetic Justification: Pellornis has been recovered as a member of Messelornithidae, a clade that
has been supported by synapomorphies as sister taxon to Rallidae+Heliornithidae [166] or Rallidae to
the exclusion of Heliornithidae [167]. Recent work [168] supports the former position for Pellornis and
Messelornithidae, and that is used here.
Minimum Age Constraint: 53.9 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The fossil is from the Fur Formation of Denmark. The minimum age is based
on a 54.04+/-0.14 Ma radiometric date reported for layer +19 of the Fur Formation [169]. The latest
Cretaceous is set as the maximum, corresponding to the age range of the oldest neognathous bird
Vegavis iaii. No reliable records of Gruiformes are known from Cretaceous deposits. This maximum
incorporates the possibility that Paleocene taxa such as the poorly known Messelornis russelli or the
enigmatic Walbeckornis belong to crown Gruiformes.

A.7. Calibrated Node: Crown Gruidae (Balearicinae–Gruinae split)
Fossil Specimen: Balearica exigua UNSM 53579
Phylogenetic Justification: Balearica exigua is known from a number of specimens that exhibit distinct
similarities to extant Balearica across the skeleton, including the skull, beak, femur, tibiotarsus,
tarsometatarsus, and humerus [170]. Most diagnostically, B. exigua exhibits inflated frontals, a feature
shared with extant Balearica, in contrast to the uninflated condition in Gruinae (the crane subfamily
including all other cranes in the genera Leucogeranus, Antigone, and Grus). Among Neoaves, Balearica is
the only clade of extant Neoaves exhibiting this feature [171], further supporting referral of B. exigua to
total-clade Balearicinae.
Minimum Age Constraint: 10.3 Ma
Maximum Age Constraint: 53.9 Ma
Age Justification: The specimens derive from the upper Clarendonian Ash Hollow Formation of the
Cap Rock Member, near Orchard, Nebraska [170]. Although the specimens derive from a 2m-thick
volcanic ash bed, and despite previous work on the age of the Ash Hollow Formation [172], precise
constraints on the age of this locality are lacking. Considering this uncertainty, and given the upper



Diversity 2019, 11, 109 21 of 35

Clarendonian age of this locality, we assign an age of 10.3 Ma, corresponding to the lower bound of the
Clarendonian inclusive of error.

A.8. Calibrated Node: Stem Laridae (Laridae–Alcidae split)
Fossil Specimen: Laricola elegans NMB s.g.18810
Phylogenetic Justification: De Pietri et al. [173] recovered Laricola as either the sister to Laridae
(=Laromorphae) or within Laridae (with Anous the sister taxon to all other Laridae). Smith [174]
recommended Laricola as a crown Laromorphae calibration, however, the analysis upon which this
was based was conducted before new cranial material was described. We conservatively place it as
sister to Laromorphae, reflecting this uncertainty.
Minimum Age Constraint: 20.44 Ma
Maximum Age Constraint: 47.8 Ma
Age Justification: The fossil is from Saint-Gérand-le-Puy, France. Quarries at Saint-Gérand-le-Puy span
the Oligocene and Miocene, but De Pietri et al. [173] were unable to confirm or refute whether any of the
historically collected Laricola material comes from the Oligocene age deposits. We thus conservatively
use the upper bound of the Aquitanian for the hard minimum. The oldest reasonably complete
fossil assignable to Charadriiformes is an unnamed Eocene (Lutetian) fossil SMF-ME 2458A+B [175].
The lower bound of the Lutetian is thus used as a maximum.

A.9. Calibrated Node: Stem Phaethontiformes
Fossil Specimen: Lithoptila abdounensis OCP.DEK/GE 1087
Phylogenetic Justification: Phylogenetic analyses by Bourdon et al. [176] and Smith [177] recover
Lithoptila abdounensis as a stem representative of Phaethontiformes, and cranial characters preserved
in OCP.DEK/GE 1087 support this placement. Although the position of Phaethontidae within Aves
has been controversial, the placement of Lithoptila has been stable, which tracks Phaethontidae in
phylogenetic analyses regardless of the arrangement of other taxa.
Minimum Age Constraint: 56 Ma
Maximum Age Constraint: 72.1 Ma
Age Justification: The fossil was collected from an unspecified quarry, assigned to Bed IIa of the Ouled
Abdoun Basin, near Grand Daoui, Morocco, which in turn can be assigned to the Thanetian based on
selachians identified in the matrix [176]. As both the precise numerical age of Bed IIa deposits and
the precise horizon from which the fossil was collected remain uncertain, the lower age bound for
the Thanetian is used as a hard minimum. More fragmentary records of probable Phaethontiformes
are known from slightly older (Danian) deposits in New Zealand [178]. We conservatively rely on
Lithoptila, but note that these records are encompassed between the minimum and maximum bounds.
The maximum age extends to the base of the Maastrichtian to accommodate the possibility that some
of the poorly represented marine birds from the Cretaceous–Paleogene of New Jersey may represent
tropicbirds [176].

A.10. Calibrated Node: Stem Phalacrocoracidae (Phalacrocoracidae–Anhingidae split)
Fossil Specimen: Oligocorax (=Borvocarbo) stoeffelensis PW 2005/5022-LS
Phylogenetic Justification: Phylogenetic analysis by Smith [177] and Mayr [179] recover Oligocorax
stoeffelensis as more closely related to Phalacrocorax than to Anhinga. PW 2005/5022-LS preserves a
substantial portion of the skeleton, including synapomorphy-bearing elements.
Minimum Age Constraint: 24.82 Ma
Maximum Age Constraint: 51.81 Ma
Age Justification: The fossil is from a maar lake deposit at Enspel in Germany. These deposits are
assigned to the MP28 biozone [153], the top of which is used for the hard minimum age. Comparable
in age is the Late Oligocene Nambashag from the Australian Etadunna and Namba Formations (Worthy,
2011), which also represents a stem member of Phalacrocoracidae [179]. The maximum is based on the
age of the Green River Formation, from which members of Aequornithes such as Limnofregata and
Vadaravis have been recovered.
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A.11. Calibrated Node: Crown Austrodyptornithes (Sphenisciformes–Procellariiformes split)
Fossil Specimen: Waimanu maneringi CM zfa35
Phylogenetic Justification: Phylogenetic analysis supports the placement of Waimanu along the
penguin stem lineage [180,181]. CM zfa35 is the only published specimen of Waimanu manneringi.
Minimum Age Constraint: 60.5 Ma
Maximum Age Constraint: 72.1 Ma
Age Justification: Biostratigraphic evidence, specifically the ranges of Hornibrookina teuriensis and
Chaismolithus bidens indicate the minimum possible age of the type locality is 60.5 Ma [180,182,183].
The maximum is based on the lower bound of the Maastrichtian Stage. Southern Hemisphere
Maastrichtian marine vertebrate sites have yielded diving birds such as Polarornis and hesperornithids,
indicating preservation potential for marine diving birds, but no penguin (or procellariiform) remains
have been recovered at these sites.

A.12. Calibrated Node: Stem Fregatidae (Fregatidae–Suloidea split)
Fossil Specimen: Limnofregata azygosternon USNM 22753
Phylogenetic Justification: Phylogenetic analysis supports the placement of Limnofregata as the sister
taxon to extant Fregata [177], in agreement with longstanding interpretations of this fossil taxon [157].
USNM 22753 is an articulated skeleton preserving most key synapomorphies that place Limnofregata
azygosternon on the frigatebird stem lineage.
Minimum Age Constraint: 51.57 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The minimum date of 51.57 Ma incorporates the error associated with an 40Ar/39Ar
date of 51.66 ± 0.09 Ma obtained from a potassium-feldspar (K-spar) tuff above the fossiliferous horizon
containing USNM 336484 [184]. A few fragmentary records of Limnofregata are known from slightly
older (~2 Ma) deposits of the Wasatch Formation [185] and Namejoy Formation [186]. We conservatively
rely on the complete Fossil Butte skeleton but we also note that these records are encompassed between
the minimum and maximum bounds. The latest Cretaceous is set as the soft maximum, corresponding
to the age range of the oldest known crown bird Vegavis. No well-supported material from the core
waterbird clade Aequornithes are known from Cretaceous deposits, indicating it is unlikely the highly
nested divergence between Fregatidae and Suloidea had occurred before the Paleocene.

A.13. Calibrated Node: Crown Spheniscidae (MRCA extant Spheniscidae)
Fossil Specimen: Madrynornis mirandus MEF-PV 100
Phylogenetic Justification: Madrynornis mirandus was originally considered to be closely related to
Eudyptes [187,188] and later considered to possibly represent the sister taxon to crown Spheniscidae [189,190].
Re-study of the holotype has revealed new character evidence and the most recent phylogenetic
analysis suggested that Madrynornis is instead more closely related to Spheniscus and Eudyptula,
though support was weak for this hypothesis (trees placing the fossil with Eudyptes were only
one step longer). Nevertheless, seven synapomorphies support crown status for Madrynornis, most
compellingly the widely separated fossa temporalis, elongate processus retroarticularis, and small
foramen ilioischiadicum [191]. Given the strong evidence that Madrynornis is a crown penguin and the
lingering uncertainty over the precise placement of this taxon, we use Madrynornis as a calibration for
the penguin crown group.
Minimum Age Constraint: 9.2 Ma
Maximum Age Constraint: 27 Ma
Age Justification: The single known specimen of Madrynornis mirandus, comprising most of a skeleton,
was collected from the “Entrerriense” sequence of the Puerto Madryn Formation [187]. This sequence
was deposited at 10.0+/−0.3 Ma based on 87Sr/86Sr dates obtained from fossil mollusks [192].
The maximum age is based on the age of the Kokoamu Greensand of New Zealand, a unit that
together with the overlying Otekaika Limestone has yielded no less than ten penguin species. All of
these species, as well as those from other Oligocene units in Australia and South America, are stem
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penguins. The extensive global record of stem penguins demonstrates strong preservation potential
for total group penguins, so the lack of any potential crown penguins in the Paleogene is most likely
due to true absence rather than being an artifact of the fossil record.

A.14. Calibrated Node: Stem Apodiformes (Apodiformes–Aegothelidae split)
Fossil Specimen: Eocypselus vincenti MGUH 29278
Phylogenetic Justification: Phylogenetic analyses have consistently placed Eocypselus as the sister
taxon to extant Apodiformes [160,193]. Eocypselus is supported as a member of Pan-Apodiformes by
two unambiguous synapomorphies: an abbreviated humerus and an ossified arcus extensorius of the
tarsometatarsus, while monophyly of crown Apodiformes to the exclusion of Eocypselus is supported
by eight additional characters [160].
Minimum Age Constraint: 53.9 Ma
Maximum Age Constraint: 66.5 Ma Age Justification: The minimum age is based on a 54.04+/−0.14 Ma
radiometric date reported for layer +19 of the Fur Formation [169]. The maximum age is set as the
K–Pg boundary. The earliest records of Strisores are all late Eocene in age (e.g., stem podargids, stem
nyctibiids, etc.), and the divergence between Apodiformes and Aegothelidae is deeply nested within this
clade [37,38]. Although Strisores have been hypothesized to be the sister taxon to all other neoavians [38],
the lack of Late Cretaceous Neoaves and the deeply nested position of Pan-Apodiformes within Strisores
argue against a Cretaceous origin.

A.15. Calibrated Node: Stem Threskiornithidae (Threskiornithidae–Pelecanidae/Ardeidae split)
Fossil Specimen: Rhynchaeites sp. MGUH 20288
Phylogenetic Justification: Multiple apomorphies support the placement of Rhynchaeites within the
total clade Threskiornithidae [194]. Although the characteristic ibis-type bill is not preserved in MGUH
20288, derived characteristics of the hindlimb support assignment to Rhynchaeites as well as placement
along the stem lineage of Threskiornithidae for this specimen [167].
Minimum Age Constraint: 53.9 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The minimum age is based on a 54.04+/−0.14 Ma radiometric date reported for layer
+19 of the Fur Formation [169]. The latest Cretaceous is set as the soft maximum, corresponding to the
age range of the oldest neognathous bird Vegavis. No members of the core waterbird clade Aequornithes
are known from Cretaceous deposits, indicating it is unlikely the highly nested divergence between
ibises and other waterbirds occurred before the Paleocene.

A.16. Calibrated Node: Stem Musophagiformes (Musophagiformes–Otidiformes split)
Fossil Specimen: Foro panarium USNM 336261
Phylogenetic Justification: F. panarium was supported as the sister taxon to crown Musophagidae
on the basis of phylogenetic analyses employing multiple alternative backbone constraints [195].
Character states resolving as unambiguous synapomorphies of an exclusive Musophagidae+Foro clade
include a furcula unfused at its midline, large tubercula praeacetabularia of the pelvis, os carpi ulnare
with crus longum greatly abbreviated, and bill short and stout with broad processus maxillaris of os
nasale [135].
Minimum Age Constraint: 51.81 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The fossil is from the Fossil Butte Member, Green River Formation, Wyoming, USA.
These deposits are late early Eocene in age, and multicrystal analyses (sanidine) from a K-feldspar tuff

(FQ-1) at the top of the middle unit of the Fossil Butte Member, from Fossil–Fowkes Basin (locality:
N41◦47′32.2′′ W110◦42′39.6′′) have yielded an age of 51.97 ± 0.16 Ma [159]. The latest Cretaceous is set
as the maximum, corresponding to the age range of the oldest neognathous bird Vegavis. Foro panarium
is easily the oldest known well supported member of Otidimorphae, indicating that although an
Otidimorphae ghost lineage must extend earlier into the Paleogene, a Cretaceous divergence among
crown Otidimorphae is unlikely.
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A.17. Calibrated Node: Stem Coliiformes (Coliiformes–Cavitaves split)
Fossil Specimen: Tsidiiyazhi abini NMMNH P-54128
Phylogenetic Justification: Combined analyses by Ksepka et al. [196] recovered Tsidiiyazhi abini as a
stem mousebird, regardless of whether only morphological data are considered or the relationships of
extant taxa are constrained using various topologies recovered by recent large-scale molecular studies.
Minimum Age Constraint: 62.221 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The fossil was collected from the Ojo Encino Member of the Nacimiento Formation.
This horizon falls within magnetochron C27N, constraining the absolute geochronological age to
62.221–62.517 Ma. The latest Cretaceous is set as the maximum, corresponding to the age range of
the oldest neognathous bird Vegavis. No members of the “landbird” clade Telluraves are known from
Cretaceous deposits, indicating it is unlikely the Coliiformes–Cavitaves divergence had occurred before
the Paleocene.

A.18. Calibrated Node: Crown Piciformes (MRCA extant Piciformes)
Fossil Specimen: Rupelramphastoides knopfi SMF Av 500
Phylogenetic Justification: Mayr [197,198] provided evidence from synapomorphic features of the
tarsometatarsus and ulna that clearly support placement of this fossil within total clade Pici. However,
uncertainty remains over whether this taxon belongs within the crown Pici or is outside this clade.
Conservatively, it is used as a calibration for the Pici–Galbulae split.
Minimum Age Constraint: 31 Ma
Maximum Age Constraint: 58.5 Ma
Age Justification: The fossil is from Frauenweiler, Germany. The Frauenweiler locality was considered
MP22 (32 Ma) by Micklich and Hildebrandt [199]. In order to set a hard minimum, the top of MP22
at 31 Ma [165] was used. The maximum is based on the oldest described member of Afroaves, the
Paleocene owl Ogygoptynx wetmorei.

A.19. Calibrated Node: Stem Coracii (Coracioidea–Meropidae split)
Fossil Specimen: Primobucco mcgrewi USNM 336484
Phylogenetic Justification: Phylogenetic analyses place Primobucco mcgrewi along the stem lineage
leading to the clade Coracioidea (rollers and ground rollers) [200,201]. This is consistent with the
hypothesis originally proposed by Houde and Olson [202].
Minimum Age Constraint: 51.81 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The fossil is from the Fossil Butte Member, Green River Formation, Wyoming,
USA. These deposits are late early Eocene, and multicrystal analyses (sanidine) from a K-feldspar tuff

(FQ-1) at the top of the middle unit of the Fossil Butte Member, from Fossil–Fowkes Basin (locality:
N41◦47′32.2′′ W110◦42′39.6′′) have yielded an age of 51.97 ± 0.16 Ma [159]. The latest Cretaceous is set
as the maximum, corresponding to the age range of the oldest neognathous bird Vegavis. No members
of the “landbird” clade Telluraves are known from Cretaceous deposits, indicating it is unlikely the
highly nested Coracioidea–Meropidae divergence had occurred before the Paleocene.

A.20. Calibrated Node: Stem Todidae (Todidae–Momotidae/Alcedinidae split)
Fossil Specimen: Palaeotodus itardiensis SMF Av505
Phylogenetic Justification: Mayr and Knopf [203] identified derived characters of Todidae including
the scapi clavicularum of the furcula being very thin, the proximal end of the humerus reaching far
ventrally and being inflected so that almost the entire caput humeri is situated farther ventrally than
the ventral margin of the shaft, a carpometacarpus with a large processus intermetacarpalis, a greatly
elongated and slender tarsometatarsus measuring almost the length of the humerus, and the plantar
surface of trochlea metatarsi III bearing a marked sulcus.
Minimum Age Constraint: 31 Ma
Maximum Age Constraint: 55 Ma
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Age Justification: The fossil is from Frauenweiler south of Wiesloch (Baden-Württemberg, Germany),
former clay pit of the Bott-Eder GmbH (“Grube Unterfeld”). The Frauenweiler locality was considered
MP22 (32Ma) by Micklich and Hildebrandt [199]. The top of MP22 at 31 Ma [165] was used to set a
hard minimum. The oldest reported Coraciiformes (sensu Yuri et al. [87]) are from the early Eocene.
Given this limit and the absence of Todidae in Lagerstätten such as the Green River, Messel, London
Clay, and Fur Formations which otherwise preserve an abundance of small birds, a maximum of 55 Ma
is specified.

A.21. Calibrated Node: Psittacopasserae (Psittaciformes and Passeriformes split)
Fossil Taxon: Eozygodactylus americanus
Specimen: USNM 299821, partial articulated skeleton
Phylogenetic Justification: Phylogenetic analyses have consistently recovered Zygodactylidae
(including Eozygodactylus) as stem passerines [204,205]. This relationship is supported by a suite of
characters including the presence of a large processus intermetacarpalis of the carpometacarpus, great
elongation of the tarsometatarsus (exceeding length of humerus) and presence of a crista plantaris
lateralis of the tarsometatarsus [204], and has been recovered both by analyses of morphological data
alone and those in which molecular scaffolds are enforced.
Minimum Age Constraint: 51.81 Ma
Maximum Age Constraint: 66.5 Ma
Age Justification: The minimum age is based on the lower bound of the age for the fossiliferous
horizons of the Fossil Butte Member of the Green River Formation. These deposits are late early Eocene,
and multicrystal analyses (sanidine) from a K-feldspar tuff (FQ-1) at the top of the middle unit of the
Fossil Butte Member have yielded an age of 51.97 ± 0.16 Ma [159]. Slightly older potential records of
Zygodactylidae from the London Clay Formation and Fur Formation have been referenced [206–208],
but because the former are isolated bones and the latter are not yet formally described, we conservatively
rely on the more complete and well documented Green River Formation specimens for the hard
minimum age. The latest Cretaceous is set as the maximum, corresponding to the age range of the
oldest confirmed crown bird fossil Vegavis. No members of the Psittacopasserae or the more inclusive
clade Telluraves (“higher land birds”) are known from Cretaceous deposits, indicating it is extremely
unlikely that the highly nested parrot-songbird divergence had occurred before the Paleocene.

A.22. Calibrated Node: Crown Eupasseres
Fossil Specimen: Suboscines indet. SMF Av 504
Phylogenetic Justification: The presence of a distally protruding finger-like process at the cranial edge
of metacarpal III is an apomorphy supporting assignment of SMF Av 504 to at least the stem suboscine
lineage [209]. Additionally, the hatchet-shaped phalanx II-1 is similar to suboscines and differs from
oscines, Acanthisittidae, and Zygodactylus luberonensis. This feature is potentially another apomorphy
for suboscines, though its distribution has not yet been fully documented.
Minimum Age Constraint: 26 Ma
Maximum Age Constraint: 55 Ma
Age Justification: The exact horizon from which this specimen was collected was not specified, but
the Luberon fossil deposits are considered to fall within the MP21–MP25 age range according to
Manegold [210]. We conservatively use the minimum age of MP25 as a hard minimum date (see
Figure 28.10 of [165]). The oldest reported stem Passeriformes are from the early Eocene. Furthermore,
no crown Passeriformes of any type are found in Eocene deposits such as the Green River Formation,
Messel Formation, London Clay Formation, or Fur Formation, each of which otherwise preserves an
abundance of small bird fossils. These deposits are all from the Northern Hemisphere. Eupasseres
appear to have originated in the Southern Hemisphere, which has a much poorer fossil record for
small birds. Nevertheless, several Oligocene–Miocene fossils of early members of Eupasseres have
been described from European deposits, which indicate that the clade was not entirely restricted to the
Southern Hemisphere early in their evolutionary history. These include Oligocene fossils Wieslochia weissi



Diversity 2019, 11, 109 26 of 35

(a possible stem suboscine or perhaps a lineage just outside Eupasseres; [211], a potential Miocene
record of the suboscine lineage Eurylaimidae [212] and several Miocene tarsometatarsi that retain
plesiomorphic features suggesting they represent an extinct lineage outside of Eupasseres [213]. Thus,
the Early Eocene provides a conservative maximum age.
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